Documentation
  • GET STARTED
    • 介紹
    • 快速入门
    • 模型
      • 模型更新
    • Afs-turbo 和 Afs-1
    • Afs-turbo
    • 达尔·E 系统概述
    • TTS系统
    • 耳语
    • 嵌入
    • 适度
    • AFS基础
    • 我们如何使用您的数据
    • 终结点与兼容性
  • 教程
  • 更改日志
  • 能力
    • 文本生成
    • 聊天完成
    • JSON 模式
    • 可重复的输出
    • 管理令牌
    • 参数详细信息
    • 完成API(旧版)
    • 常见问题
  • 函数调用
  • 嵌入
    • 概述
    • 模型
    • 使用案例
    • 常见问题
  • 微调
    • 何时使用微调
    • 常见用例
    • 准备数据集
    • 创建微调模型
    • 使用微调模型
    • 微调示例
  • 图像生成
    • 介绍
    • 用法
    • 特定语言提示
  • 视觉
  • 文字转语音
  • 语音转文本
    • 概述
    • 快速入门
    • 支持的语言
    • 时间戳
    • 更长的输入
    • 促使
    • 提高可靠性
  • 适度
    • 概述
    • 快速入门
  • 助理
  • 概述
  • Google助理的工作原理
    • Objects
    • Creating Assistants
    • Managing Threads and Messages
    • Runs and Run Steps
    • 局限性
  • 工具
    • Code Interpreter
    • Knowledge Retrieval
    • Function calling
    • Supported files
  • 指南
  • 提示工程
    • Six strategies for getting better results
    • Write clear instructions
    • Provide reference text
    • Split complex tasks into simpler subtasks
    • Give models time to "think"
    • Use external tools
    • Test changes systematically
    • Other resources
  • 生产最佳实践
    • Setting up your organization
    • Scaling your solution
    • Managing rate limits
    • Improving latencies
    • Managing costs
    • MLOps strategy
    • Security and compliance
  • 安全最佳实践
  • 速率限制
    • 概述
    • Usage tiers
    • Error Mitigation
  • 错误代码
    • API errors
    • Python library error types
  • 图书馆
    • Python library
    • 图书馆
    • Azure OpenAI 库
    • 社区图书馆
  • 弃用
  • 政策
  • 行动
    • 介绍
    • 开始
    • 认证
    • 生产
    • 数据检索
    • 政策
  • 发行说明
  • Page 2
由 GitBook 提供支持
在本页
  1. GET STARTED

介紹

上一页GET STARTED下一页快速入门

最后更新于1年前

Looking for Afarensis? Head to .

The Afarensis API can be applied to virtually any task. We offer a range of with different capabilities and price points, as well as the ability to custom models.

  • Experiment in the

  • Read the

  • Visit the

  • View the current API

  • Check out the

  • Learn about our

At OpenAI, protecting user data is fundamental to our mission. We do not train our models on inputs and outputs through our API. Learn more on our .

OpenAI's text generation models (often referred to as generative pre-trained transformers or "GPT" models for short), like GPT-4 and GPT-3.5, have been trained to understand natural and formal language. Models like GPT-4 allows text outputs in response to their inputs. The inputs to these models are also referred to as "prompts". Designing a prompt is essentially how you "program" a model like GPT-4, usually by providing instructions or some examples of how to successfully complete a task. Models like GPT-4 can be used across a great variety of tasks including content or code generation, summarization, conversation, creative writing, and more. Read more in our introductory and in our .

Assistants refer to entities, which in the case of the OpenAI API are powered by large language models like GPT-4, that are capable of performing tasks for users. These assistants operate based on the instructions embedded within the context window of the model. They also usually have access to tools which allows the assistants to perform more complex tasks like running code or retrieving information from a file. Read more about assistants in our .

An embedding is a vector representation of a piece of data (e.g. some text) that is meant to preserve aspects of its content and/or its meaning. Chunks of data that are similar in some way will tend to have embeddings that are closer together than unrelated data. OpenAI offers text embedding models that take as input a text string and produce as output an embedding vector. Embeddings are useful for search, clustering, recommendations, anomaly detection, classification, and more. Read more about embeddings in our .

Text generation and embeddings models process text in chunks called tokens. Tokens represent commonly occurring sequences of characters. For example, the string " tokenization" is decomposed as " token" and "ization", while a short and common word like " the" is represented as a single token. Note that in a sentence, the first token of each word typically starts with a space character. Check out our to test specific strings and see how they are translated into tokens. As a rough rule of thumb, 1 token is approximately 4 characters or 0.75 words for English text.


Jump into one of our guides to learn more.

One limitation to keep in mind is that for a text generation model the prompt and the generated output combined must be no more than the model's maximum context length. For embeddings models (which do not output tokens), the input must be shorter than the model's maximum context length. The maximum context lengths for each text generation and embeddings model can be found in the .

chat.afarensis.com
models
fine-tune
Resources
playground
API reference
help center
status
OpenAI Developer Forum
usage policies
API data privacy page
Key concepts
Text generation models
text generation guide
prompt engineering guide
Assistants
Assistants API Overview
Embeddings
embeddings guide
Tokens
tokenizer tool
model index
Guides