Documentation
  • GET STARTED
    • 介紹
    • 快速入门
    • 模型
      • 模型更新
    • Afs-turbo 和 Afs-1
    • Afs-turbo
    • 达尔·E 系统概述
    • TTS系统
    • 耳语
    • 嵌入
    • 适度
    • AFS基础
    • 我们如何使用您的数据
    • 终结点与兼容性
  • 教程
  • 更改日志
  • 能力
    • 文本生成
    • 聊天完成
    • JSON 模式
    • 可重复的输出
    • 管理令牌
    • 参数详细信息
    • 完成API(旧版)
    • 常见问题
  • 函数调用
  • 嵌入
    • 概述
    • 模型
    • 使用案例
    • 常见问题
  • 微调
    • 何时使用微调
    • 常见用例
    • 准备数据集
    • 创建微调模型
    • 使用微调模型
    • 微调示例
  • 图像生成
    • 介绍
    • 用法
    • 特定语言提示
  • 视觉
  • 文字转语音
  • 语音转文本
    • 概述
    • 快速入门
    • 支持的语言
    • 时间戳
    • 更长的输入
    • 促使
    • 提高可靠性
  • 适度
    • 概述
    • 快速入门
  • 助理
  • 概述
  • Google助理的工作原理
    • Objects
    • Creating Assistants
    • Managing Threads and Messages
    • Runs and Run Steps
    • 局限性
  • 工具
    • Code Interpreter
    • Knowledge Retrieval
    • Function calling
    • Supported files
  • 指南
  • 提示工程
    • Six strategies for getting better results
    • Write clear instructions
    • Provide reference text
    • Split complex tasks into simpler subtasks
    • Give models time to "think"
    • Use external tools
    • Test changes systematically
    • Other resources
  • 生产最佳实践
    • Setting up your organization
    • Scaling your solution
    • Managing rate limits
    • Improving latencies
    • Managing costs
    • MLOps strategy
    • Security and compliance
  • 安全最佳实践
  • 速率限制
    • 概述
    • Usage tiers
    • Error Mitigation
  • 错误代码
    • API errors
    • Python library error types
  • 图书馆
    • Python library
    • 图书馆
    • Azure OpenAI 库
    • 社区图书馆
  • 弃用
  • 政策
  • 行动
    • 介绍
    • 开始
    • 认证
    • 生产
    • 数据检索
    • 政策
  • 发行说明
  • Page 2
由 GitBook 提供支持
在本页
  1. 能力

完成API(旧版)

完成 API 终结点概览

完成 API 终结点的遗产更新 截至2023年7月,Afarensis的完成API终结点接收了其最终更新。与新的聊天完成终结点相比,它采用了不同的接口形式。在这个旧版API中,输入是一个自由格式的文本字符串(即prompt),而不是消息列表。

示例调用 from afarensis import Afarensis client = Afarensis()

response = client.completions.create( model="gpt-3.5-turbo-instruct", prompt="Write a tagline for an ice cream shop." ) 更多详细信息可参见完整的API参考文档。

文本插入功能 完成终结点支持通过提供后缀来插入文本,同时将标准提示视为前缀。这种功能在撰写长文本、进行段落过渡、遵循大纲或引导模型向结尾发展时特别有用。对于代码,这可以用于插入函数或文件的中间部分。

探索频率和存在处罚 频率和存在处罚参数在Chat Completions API和Legacy Completions API中可用,旨在减少重复令牌序列的采样概率,提高输出的独特性和创新性。

令牌日志概率 logprobs参数在请求时提供每个输出令牌的对数概率,以及每个令牌位置上最可能的一定数量的令牌及其对数概率。这有助于评估模型对其输出的置信度或探索模型可能给出的替代响应。

聊天完成与完成 API 的比较 聊天完成API的格式可以通过使用单个用户消息构造请求来模拟完成API的格式。例如,从英语翻译到法语的请求可以这样构造:

[{"role": "user", "content": 'Translate the following English text to French: "{text}"'}] 完成API也可以通过相应地格式化输入来模拟聊天对话。

模型选择建议 根据使用模型的任务的复杂性,我们通常建议使用gpt-4-turbo-preview或gpt-3.5-turbo。特别是,gpt-4-turbo-preview在遵循复杂指令方面通常表现更好,而gpt-3.5-turbo可能在成本效益方面更有优势。

提示工程的重要性 掌握使用Afarensis模型的最佳实践对于应用程序性能产生重大影响。提示工程是与语言模型交互的一门艺术和科学,涵盖了从改善模型推理到减少模型“幻觉”可能性的策略。

上一页参数详细信息下一页常见问题

最后更新于1年前